

Manual de Programação e Operação do Sistema de Purga do Ecoss Controlador Novus N1100 Transmissor Burkert 8222

Sumário

1.	Introdução	3
2.	Modo Funcionamento Sistema Purga	3
3.	Apresentação e Programação do Controlador N1100	4
4.	Programação Transmissor de Condutividade 8222	6

1. Introdução

Este manual visa auxiliar o instalador e operador a realizarem a parametrização, caso necessário, do controlador Novus N1100, responsável pelo sistema de purga do Condensador ECOSS.

Neste documento também constam o fluxograma de funcionamento do sistema de purga e um ciclograma explicativo, para que seja possível entender como o sistema de purga funciona.

2. Modo Funcionamento Sistema Purga

Na Fig. 1 é apresentado o fluxograma de funcionamento do sistema de purga.

Figura 1. Fluxograma de Funcionamento Sistema de Purga

Segue breve descritivo do funcionamento do sistema:

Com o condensador habilitado, emergência liberada e sinal remoto OK, o sistema começa a verificar se a condutividade da água está acima de 2700 μ S/cm² (Setpoint [SP]), caso esteja então é habilitado o clico de purga [I/O 1] e a válvula de purga [I/O 3] é aberta por um tempo de 120s, e então fechada por 300s e então volta a abrir, este ciclo será interrompido somente em caso de a condutividade atingir um valor inferior a 1350 μ S/cm² (Setpoint – Histerese [SP-Hyst]). Este ciclo se repetirá indefinidamente até que o condensador esteja habilitado.

Na Fig. 2 é possível visualizar o ciclograma acima descrito.

Figura 2. Ciclograma do Sistema de Purga

3. Apresentação e Programação do Controlador N1100

Na Fig. 3 é apresentado a interface do controlador Novus N1100, juntamente com o descritivo de cada um dos leds do mesmo e a funcionalidade dos seus botões.

Figura 7 - Identificação das partes do painel frontal

Display de PV/Programação: Apresenta o valor atual da PV (Process Variable). Quando em configuração, mostra os símbolos dos diversos parâmetros que devem ser definidos.

Display de SP/Parâmetros: Apresenta o valor de SP (Setpoint). Quando em configuração, mostra os valores definidos para os diversos parâmetros.

Sinalizador COM: Pisca toda vez que o controlador troca dados com o exterior via RS485.

Sinalizador TUNE: Permanece ligado enquanto o controlador estiver em processo de sintonia.

Sinalizador MAN: Sinaliza que o controlador está no modo de controle manual.

Sinalizador RUN: Indica que o controlador está ativo, com a saída de controle e alarmes habilitados.

Sinalizador OUT: Para saída de controle Relé ou Pulso, o sinalizador OUT representa o estado instantâneo desta saída. Para saída de controle analógica (0-20 mA ou 4-20 mA) este sinalizador permanece constantemente acesso.

Sinalizadores A1, A2, A3 e A4: sinalizam a ocorrência de situação de alarme.

P Tecla P: Tecla utilizada para avançar aos sucessivos parâmetros do controlador.

Tecla Back: Tecla utilizada para retroceder parâmetros.

▲ Tecla de incremento e Tecla Decremento: Estas teclas permitem alterar os valores dos parâmetros.

Ao ser energizado, o controlador apresenta por 3 segundos o número da sua versão de *software*, quando então passa a operar, mostrando no visor superior a variável de processo (PV) e no visor de SP/Parâmetros o valor do *Setpoint* de controle (tela de indicação).

Figura 3. Apresentação do Controlador e suas funções (LEDs e Botões)

A parametrização do controlador deve ser iniciado pelo quarto nível de parametrização. Para acessar este nível é necessário segurar o botão "P" pressionado até que o display de PV apareça o valor "tYPE". Na Tabela 1 contém os parâmetros de programação do Nível 4.

Nível 4										
tYPE	=	L 4.20								
dPPo	=	0								
unit	= °C									
oFFS	=	0								
SPLL	=	0								
SPHL	= 6000									
E.rSP	=	no								
rSP	=	4-20								
rSLL	=	0								
rSHL	=	20								
bAud	=	9,6								
PrtY	=	nonE								
Addr	=	1								

Tabela 1. Nível de programação 4, Controlador N1100

		Nível 3			Nível 5			
Atun	=	no	FuA1	=	dIFH	io1	=	A2
Pb	=	0	FuA2	=	dIFH	io2	=	oFF
ir	=		FuA3	=	oFF	io3	=	A1
dt	=		FuA4	=	oFF	io4	=	oFF
Ct	=	0,5	bLA1	=	no	io5	=	oFF
HYST	=	1350	bLA2	=	no			
ACt	=	dir	bLA3	=	no			
biAS	=	0	bLA4	=	no			
ouLL	=	0	HYA1	=	1350			
ouHL	=	100	HYA2	=	1350			
SFST	=	0	HYA3	=	0			
SPA1	=	1	HYA4	=	0			
SPA2	=	1	A1t1	=	120			
SPA3	=	0	A1t2	=	300			
SPA4	=	0	A2t1	=	0			
			A2t2	=	0			

A seguir pode-se realizar a parametrização dos demais níveis de programação, para acessá-los, deve-se segurar o botão "P" pressionado até que se chegue ao primeiro parâmetro do nível desejado. A Tabela 2 apresenta os demais níveis de parametrização.

Após finalizado a parametrização do controlador é necessário inserir o valor de SP, utilizando os botões "\/" e "/\" no display principal. O valor a ser setado de acordo com as recomendações da Guntner é o valor de 2700 μ S/cm². E em seguida deve-se colocar o controlador rodar, para isto, pressione e solte o botão "P" rapidamente até que a palavra "run" seja mostrada no Display de PV, e então mude para "YES".

4. Programação Transmissor de Condutividade 8222

Na Fig. 4 é apresentado a interface do transmissor de condutividade Burkert 8222.

Figura 4. Apresentação do Transmissor e suas funções (Botão)

Tabela 2. Demais Níveis de Programação Controlador N1100

A programação do transmissor de condutividade deve ocorrer de acordo com o passo a passo setado abaixo.

- 1. Pressionar o botão ao centro por pelo menos 2 segundos
- 2. Pressionar o botão ao centro para entrar na opção "Param"
- 3. Deslocar o botão para baixo para ir para Outputs
- 4. Em Outputs, pressionar o botão ao centro
- 5. Pressionar o botão ao centro para entrar na opção "HW Mode"
- 6. Selecionar a opção "Source PNP"
- 7. Em seguida desloque o botão para a direita até "OK", e pressione o botão ao centro

8. Agora deve estar de volta para a tela com "HW Mode", caso não esteja vá até "Back", deslocando o botão para a direita e pressione o botão ao centro em seguida

- 9. Deslocar o botão para baixo para ir para AC1
- 10. Sete os seguintes valores
 - Pvar CondS
 - 4mA 0.000uS/cm²

20mA 6000.uS/cm² (Atenção para a posição de onde o ponto está)

11. Em seguida desloque o botão para a direita até "OK", e pressione o botão ao centro

12. Agora deve estar de volta para a tela com "HW Mode", caso não esteja vá até "Back", deslocando o botão para a direita e pressione o botão ao centro em seguida

13. Em algum momento ela irá solicitar se deseja salvar, neste momento selecione "Yes" e pressione o botão